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I.   INTRODUCTION 

Fractional calculus is a branch of mathematical analysis, which studies several different possibilities of defining real or 

complex order. In the past decades, fractional calculus has developed rapidly in mathematics and applied science. Fractional 

calculus is very popular in many fields, such as mechanics, dynamics, control theory, physics, economics, viscoelasticity, 

biology, electrical engineering, etc [1-8]. However, the definition of fractional derivative is not unique. Commonly used 

definitions include Riemann-Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) 

fractional derivative, Jumarie’s modified R-L fractional derivative [9-14]. Since Jumarie type of R-L fractional derivative 

helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to connect fractional 

calculus with classical calculus.  

In this paper, based on Jumarie type of R-L fractional calculus, we provide some examples to illustrate how to use Picard 

iterative method to find the approximation solution of fractional differential equation. A new multiplication of fractional 

analytic functions plays an important role in this article. In fact, our results are generalization of these results of ordinary 

differential equations.  

II.   PRELIMINARIES 

Firstly, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([15]): Let 0 < 𝛼 ≤ 1, and 𝑥0 be a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                (1) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 

                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                          (2) 

where Γ( ) is the gamma function.  

In the following, some properties of Jumarie type of fractional derivative are introduced. 
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Proposition 2.2 ([16]):  If  𝛼, 𝛽, 𝑥0, 𝐶 are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                            (3) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                       (4) 

Next, the definition of fractional analytic function is introduced. 

Definition 2.3 ([17]): Let 𝑥, 𝑥0, and 𝑎𝑘 be real numbers for all 𝑘, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼 -fractional power series, that is, 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0  on some open interval 

containing 𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Moreover, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed 

interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic 

function on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions.  

Definition 2.4 ([18]): If  0 < 𝛼 ≤ 1, and 𝑥0 is a real number. Suppose that 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic at 

 𝑥 = 𝑥0 , 

                                                                                  𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ,                                     (5) 

                                                                                 𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 .∞

𝑘=0                                      (6) 

Then  

                                                                     𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)  

                                                               = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ⊗ ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0   

                                                               = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (𝑥 − 𝑥0)𝑘𝛼 .                              (7) 

Equivalently, 

                                                       𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0 ⊗ ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0   

                                                 = ∑
1

𝑘!
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

 .                                 (8) 

Definition 2.5 ([19]): Assume that 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic at 𝑥 = 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0  ,               (9) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                 (10) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑘

𝑘!
(𝑔𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 ,                             (11) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑘

𝑘!
(𝑓𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 .                              (12) 

Definition 2.6 ([19]): Suppose that 0 < α ≤ 1, and 𝑥 is a real number. The 𝛼-fractional exponential function is defined by 

                                                                    𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑘𝛼

Γ(𝑘𝛼+1)
= ∑

1

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                           (13) 
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In the following, the power of fractional analytic function is defined. 

Definition 2.7: Suppose that 0 < 𝛼 ≤ 1 and 𝑛 is any positive integer. Then  

                                                                             [ 𝑓𝛼(𝑥𝛼)]⨂𝑛 =  𝑓𝛼(𝑥𝛼) ⊗ ⋯ ⊗  𝑓𝛼(𝑥𝛼)                                  (14) 

is called the 𝑛-th power of the 𝛼-fractional analytic function 𝑓𝛼(𝑥𝛼) . 

III.   RESULTS AND EXAMPLES 

In this section, the main results are provided and we give some examples to illustrate how to use Picard iterative method to 

find the approximation solution of fractional differential equations. 

Definition 3.1: Let 0 < 𝛼 ≤ 1, 𝑥0 be a real number. Then the initial-value problem of 𝛼-fractional differential equation 

                                                                                 ( 𝐷𝑥0 𝑥
𝛼)[𝑦𝛼(𝑥𝛼)] = 𝐹𝛼(𝑥𝛼 , 𝑦𝛼(𝑥𝛼)), 

                                                                                                  𝑦𝛼(𝑥0
𝛼) = 𝑦0,𝛼.                                                       (15) 

Where 𝐹𝛼 is a continuous function in a domain 𝐴𝛼, and (𝑥0
𝛼 , 𝑦0,𝛼) ∈ 𝐴𝛼. Let 𝜑𝛼(𝑥𝛼) be a solution on an interval containing 

𝑥0. Then if 𝜑𝛼(𝑥𝛼) is 𝛼-fractional analytic for all 𝑥 ∈ 𝐼, then we have 

                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝜑𝛼(𝑥𝛼)] = 𝐹𝛼(𝑥𝛼 , 𝜑𝛼(𝑥𝛼)), 

                                                                                                𝜑𝛼(𝑥0
𝛼) = 𝑦0,𝛼                                                          (16) 

for all 𝑥 ∈ 𝐼 

Theorem 3.2: Suppose that 0 < 𝛼 ≤ 1, 𝑥0 is a real number. Then 𝜑𝛼(𝑥𝛼) is a solution of the initial-value problem of 𝛼-

fractional differential equation 

                                                                       ( 𝐷𝑥0 𝑥
𝛼)[𝑦𝛼(𝑥𝛼)] = 𝐹𝛼(𝑥𝛼 , 𝑦𝛼(𝑥𝛼)), 

                                                                                                  𝑦𝛼(𝑥0
𝛼) = 𝑦0,𝛼           

if and only if 𝜑𝛼(𝑥𝛼) is a solution of the 𝛼-fractional integral equation 

                                                                           𝑦𝛼(𝑥𝛼) = 𝑦0,𝛼 + ( 𝐼𝑥0 𝑥
𝛼)[𝐹𝛼(𝑥𝛼 , 𝑦𝛼(𝑥𝛼))].                                 (17) 

Proof  (i) Suppose that  𝜑𝛼(𝑥𝛼) is a solution of the initial-value problem (15) on I. Then 

                                                                             ( 𝐷𝑥0 𝑥
𝛼)[ 𝜑𝛼(𝑥𝛼)] = 𝐹𝛼(𝑥𝛼 , 𝜑𝛼(𝑥𝛼))                                        (18) 

for all 𝑥 ∈ 𝐼. Since 𝜑𝛼 is 𝛼-fractional analytic on I and 𝐹𝛼 is continuous in 𝐴𝛼, it follows that 𝐹𝛼(𝑥𝛼 , 𝜑𝛼(𝑥𝛼)) is continuous 

on 𝐼. Thus, we obtain  

                                                                            𝜑𝛼(𝑥𝛼) = 𝑦0,𝛼 + ( 𝐼𝑥0 𝑥
𝛼)[𝐹𝛼(𝑥𝛼 , 𝜑𝛼(𝑥𝛼))]                                (19) 

for all 𝑥 ∈ 𝐼. Applying the initial condition 𝜑𝛼(𝑥0
𝛼) = 𝑦0,𝛼, we see that 𝜑𝛼 is a solution of the α-fractional integral equation 

(17) on 𝐼. 

(ii) Suppose that 𝜑𝛼(𝑥𝛼) is a solution of the 𝛼-fractional integral equation (17) on 𝐼. Since 𝐹𝛼(𝑥𝛼 , 𝜑𝛼(𝑥𝛼)) is continuous 

for all 𝑥 ∈ 𝐼, we see that (19) holds, and by fundamental theorem of fractional integral calculus, differentiation of (19) yields 

                                                                          ( 𝐷𝑥0 𝑥
𝛼)[ 𝜑𝛼(𝑥𝛼)] = 𝐹𝛼(𝑥𝛼 , 𝜑𝛼(𝑥𝛼)) 

for all 𝑥 ∈ 𝐼. We observe in (19) that 𝜑𝛼(𝑥0
𝛼) = 𝑦0,𝛼 . Therefore, 𝜑𝛼 is a solution of the initial-value problem (15). 

                                                                                                                                                                     Q.e.d. 

Example 3.3: Let 0 < 𝛼 ≤ 1. Solve the initial-value problem of 𝛼-fractional differential equation 

                                                                        ( 𝐷0 𝑥
𝛼)[𝑦𝛼(𝑥𝛼)] =

1

Γ(𝛼+1)
𝑥𝛼⨂𝑦𝛼(𝑥𝛼),                                       

                                                                                                    𝑦𝛼(0) = 1.                                                             (20) 
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Solution Since the corresponding 𝛼-fractional integral equation is 

                                                                    𝑦𝛼(𝑥𝛼) = 1 + ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼⨂𝑦𝛼(𝑥𝛼)].                                      (21) 

It follows that the successive approximations are given by 

                                                                                             𝜑0,𝛼(𝑥𝛼) = 1,                                                              (22) 

                                                                  𝜑1,𝛼(𝑥𝛼) = 1 + ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼]  

                                                                                    = 1 +
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

,                                                         (23) 

                                             𝜑2,𝛼(𝑥𝛼) = 1 + ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼⨂ {1 +

1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

}]                       

                                                               = 1 + ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼 +

1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

]     

                                                               = 1 +
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

8
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

 ,                                              (24) 

                                    𝜑3,𝛼(𝑥𝛼) = 1 + ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼⨂ {1 +

1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

8
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

}]  

                                                      = 1 + ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼 +

1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

+
1

8
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂5

]  

                                                      = 1 +
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

8
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

+
1

48
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂6

 ,                           (25) 

and thus  𝜑𝑛,𝛼(𝑥𝛼) can be obtained by induction: 

     𝜑𝑛,𝛼(𝑥𝛼)  

= 1 + (
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

) +
1

2!
(

1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

)
⨂2

+
1

3!
(

1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

)
⨂3

+ ⋯ +
1

𝑛!
(

1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂

)
⨂𝑛

.   (26) 

It can easily be seen that the solution of this initial-value problem is 

                                                                                    𝜑𝛼(𝑥𝛼) = 𝐸𝛼 (
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

) .                                              (27) 

Example 3.4: If 0 < 𝛼 ≤ 1. Find the approximation solution of the initial-value problem of 𝛼-fractional differential 

equation 

                                                                       ( 𝐷0 𝑥
𝛼)[𝑦𝛼(𝑥𝛼)] = 2 ∙

1

Γ(𝛼+1)
𝑥𝛼 + 𝑦𝛼(𝑥𝛼),              

                                                                                                    𝑦𝛼(0) = 1.                                                                  (28) 

Solution Since    

                                                                                             𝜑0,𝛼(𝑥𝛼) = 1,                                                                   (29) 

                                                                  𝜑1,𝛼(𝑥𝛼) = 1 + ( 𝐼0 𝑥
𝛼) [1 + 2 ∙

1

Γ(𝛼+1)
𝑥𝛼]  

                                                                                    = 1 +
1

Γ(𝛼+1)
𝑥𝛼 + [

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

,                                             (30) 

                                     𝜑2,𝛼(𝑥𝛼) = 1 + ( 𝐼0 𝑥
𝛼) [2 ∙

1

Γ(𝛼+1)
𝑥𝛼 + 1 +

1

Γ(𝛼+1)
𝑥𝛼 + [

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

]                       

                                                       = 1 + ( 𝐼0 𝑥
𝛼) [1 + 3 ∙

1

Γ(𝛼+1)
𝑥𝛼 + [

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

]     
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                                                       = 1 +
1

Γ(𝛼+1)
𝑥𝛼 +

3

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

3
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

 ,                                       (31) 

                         𝜑3,𝛼(𝑥𝛼) = 1 + ( 𝐼0 𝑥
𝛼) [2 ∙

1

Γ(𝛼+1)
𝑥𝛼 + 1 +

1

Γ(𝛼+1)
𝑥𝛼 +

3

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

3
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

]  

                                           = 1 + ( 𝐼0 𝑥
𝛼) [1 + 3 ∙

1

Γ(𝛼+1)
𝑥𝛼 +

3

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

3
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

]  

                                           = 1 +
1

Γ(𝛼+1)
𝑥𝛼 +

3

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

+
1

12
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

 ,                  (32) 

 𝜑4,𝛼(𝑥𝛼) = 1 + ( 𝐼0 𝑥
𝛼) [2 ∙

1

Γ(𝛼+1)
𝑥𝛼 + 1 +

1

Γ(𝛼+1)
𝑥𝛼 +

3

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

+
1

12
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

]  

                   = 1 + ( 𝐼0 𝑥
𝛼) [1 + 3 ∙

1

Γ(𝛼+1)
𝑥𝛼 +

3

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

+
1

12
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

]  

                   = 1 +
1

Γ(𝛼+1)
𝑥𝛼 +

3

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

+
1

8
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

+
1

60
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂5

 .          (33) 

It follows that the approximation solution of this initial-value problem is 

       𝜑𝛼(𝑥𝛼) 

  = 1 +
1

Γ(𝛼+1)
𝑥𝛼 +

3

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂3

+
1

8
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

+
1

60
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂5

+ ⋯ .                (34) 

 

Example 3.5: Assume that 0 < 𝛼 ≤ 1 . Find the approximation solution of the initial-value problem of 𝛼 -fractional 

differential equation 

                                                                       ( 𝐷0 𝑥
𝛼)[𝑦𝛼(𝑥𝛼)] =

1

Γ(𝛼+1)
𝑥𝛼 + [𝑦𝛼(𝑥𝛼)]⨂2,              

                                                                                                    𝑦𝛼(0) = 0.                                                                 (35) 

Solution  

                                                                                             𝜑0,𝛼(𝑥𝛼) = 0,                                                                  (36) 

                                                                  𝜑1,𝛼(𝑥𝛼) = 0 + ( 𝐼0 𝑥
𝛼) [0 +

1

Γ(𝛼+1)
𝑥𝛼]  

                                                                                    =
1

2
∙ [

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

,                                                                  (37) 

                                               𝜑2,𝛼(𝑥𝛼) = 0 + ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼 + [

1

2
∙ [

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

]
⨂2

]               

                                                                 = ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼 +

1

4
∙ [

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

]     

                                                                 =
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

20
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂5

 ,                                                       (38) 

                         𝜑3,𝛼(𝑥𝛼) = 0 + ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼 + [

1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

20
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂5

]
⨂2

]  

                                           = ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼 +

1

4
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂4

+
1

20
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂7

+
1

400
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂10

]  

                                           =
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

20
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂5

+
1

160
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂8

+
1

4400
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂11

 ,       (39) 
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Therefore, the approximation solution of this initial-value problem is 

            𝜑𝛼(𝑥𝛼) =
1

2
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂2

+
1

20
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂5

+
1

160
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂8

+
1

4400
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂11

+ ⋯ .             (40) 

 

Example 3.6: If 0 < 𝛼 ≤ 1. Find the approximation solution of the initial-value problem of 𝛼-fractional differential 

equation 

                                                                       ( 𝐷1 𝑥
𝛼)[𝑦𝛼(𝑥𝛼)] = 1 + [𝑦𝛼(𝑥𝛼)]⨂3,              

                                                                                                    𝑦𝛼(1) = 1.                                                                   (41) 

Solution  

                                                                                             𝜑0,𝛼(𝑥𝛼) = 1,                                                                    (42) 

                                                                  𝜑1,𝛼(𝑥𝛼) = 1 + ( 𝐼1 𝑥
𝛼)[1 + 1]  

                                                                                    = 1 + 2 ∙
1

Γ(𝛼+1)
(𝑥 − 1)𝛼,                                                         (43) 

     𝜑2,𝛼(𝑥𝛼)               

= 1 + ( 𝐼1 𝑥
𝛼) [1 + [1 + 2 ∙

1

Γ(𝛼+1)
(𝑥 − 1)𝛼]

⨂3

]  

= 1 + ( 𝐼1 𝑥
𝛼) [2 + 6 ∙

1

Γ(𝛼+1)
𝑥𝛼 + 12 ∙ [

1

Γ(𝛼+1)
(𝑥 − 1)𝛼]

⨂ 2

+ 8 ∙ [
1

Γ(𝛼+1)
(𝑥 − 1)𝛼]

⨂3

]     

 = 1 + 2 ∙
1

Γ(𝛼+1)
(𝑥 − 1)𝛼 + 3 ∙ [

1

Γ(𝛼+1)
(𝑥 − 1)𝛼]

⨂ 2

+ 4 ∙ [
1

Γ(𝛼+1)
(𝑥 − 1)𝛼]

⨂ 3

+ 2 ∙ [
1

Γ(𝛼+1)
(𝑥 − 1)𝛼]

⨂4

 .   (44) 

Thus, the approximation solution of this initial-value problem is 

          𝜑𝛼(𝑥𝛼) 

    = 1 + 2 ∙
1

Γ(𝛼+1)
(𝑥 − 1)𝛼 + 3 ∙ [

1

Γ(𝛼+1)
(𝑥 − 1)𝛼]

⨂ 2

+ 4 ∙ [
1

Γ(𝛼+1)
(𝑥 − 1)𝛼]

⨂ 3

+ 2 ∙ [
1

Γ(𝛼+1)
(𝑥 − 1)𝛼]

⨂ 4

+ ⋯ . 

                                                                                                                                                                             (45) 

IV.   CONCLUSION 

In this paper, based on Jumarie type of R-L fractional calculus, we give some examples to illustrate how to use Picard 

iterative method to find the approximation solution of fractional differential equation. A new multiplication of fractional 

analytic functions plays an important role in this article. In fact, our results are generalization of these results of ordinary 

differential equations. In the future, we will continue to use Jumarie’s modification of R-L fractional calculus to study the 

problems in applied mathematics and fractional differential equations. 
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